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Abstract— In this paper, we address the problem of detecting 

steady-state visual evoked potentials (SSVEPs) in EEG signals 

by using a set of simulated trains of VEPs instead of the sine-

waves basis typically used in Fourier Transform. The detection 

algorithm is calibrated using the subject's brain response to 

visual stimulation. The original contribution of the paper is that 

our detection method automatically takes into account all the 

spectral content adapted to the steady-state response in terms of 

harmonic localization, weights, and phase. We show that this 

method give better results than simple frequency analysis for 

SSVEP detection while requiring less features, thereby 

reducing the risk of overfitting the detection model.  

 

I. INTRODUCTION 

Brain-Computer Interfaces (BCIs) are communication 
systems that enable users to exchange information with a 
machine without using traditional input devices such as 
mouse, keyboard, buttons or levers. They allow users to send 
commands to a computer by reading only their brain activity 
– see [1] for an introduction about BCI. Neural activity is 
generally measured using electroencephalography (EEG), 
which is convenient, non-invasive, and has a high temporal 
resolution (in the millisecond range), making it a good 
choice for real-time applications. Most EEG-based BCIs are 
designed around a pattern recognition approach: features 
describing the relevant information embedded in the EEG 
signals are extracted and serve as inputs for a translation 
algorithm which convert these features into commands for 
the computer or machine. Various BCI systems have been 
designed using different EEG components as input features, 
including P300 evoked potentials, slow cortical potentials, 
motor related potentials, and visual evoked potentials 
(VEPs) – see [2] for references about different BCI types. 

These VEPs are electric responses elicited in the visual 
cortex of the brain by sudden visual stimulation of the retina. 
Their low amplitude (about 10 µV) makes them hard to 
discriminate from the rest of the recorded EEG activity in 
single trial scenarios. However, when the stimulation is 
repeated over time at a constant frequency – a procedure 
known as Intermittent Photic Stimulation (IPS) – the brain 
response becomes somehow stationary [3] and is referred to 
as Steady-State Visual Evoked Potentials (SSVEPs) [4]. This 
stationary response is known to contain precise components 
in the frequency domain at the stimulation frequency and its 
multiples (harmonics) [3]. 
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SSVEP-based BCIs exploit these potentials by presenting 
the user a set of images, checkerboards or more complicated 
patterns all flickering at different frequencies. Processing of 
EEG data collected over the occipital cortex of the subject 
allows for identification of the stimulation the user is 
attending to. Most of the time, the algorithms that identify 
which command is attended by the user take profit of the 
precise localization of SSVEP components in the frequency 
domain, and use the amplitudes of these spectral components 
as inputs of classifiers trained on a set of subjects whose 
SSVEPs have been recorded and processed offline. 

Based on the hypothesis that SSVEPs are merely a 
succession of transient VEPs, we study how we can use 
correlation with simulated trains of VEPs in the time domain 
instead of the more common spectral features to detect 
SSVEPs. Different types of features are compared using 
linear discriminant analysis. When using simulated trains of 
VEPs for SSVEP detection on a given subject, we expect 
that the best results will be obtained by generating the 
simulated signals with the VEP recorded from that subject. 

II. MATERIALS AND METHODS 

EEG data used in this study has already been described in 
[5] (to be published) and part of this section is therefore 
similar to section II. of [5]. 

A. Subjects  

Ten healthy subjects took part in the experiment. Nine 
were males and one female, with an average age of 24.8 
(standard deviation: 3.6, range: 21-34). All had normal or 
corrected-to-normal vision and none of them had any history 
of epilepsy, migraine or any other neurological condition. 
The study followed the principles outlined in the Declaration 
of Helsinki. All participants were given explanations about 
the nature of the experiment and signed an informed consent 
form before the experiment started. 

B. Experimental Conditions 

EEG recordings took place in a dark room, where 
subjects were seated in a comfortable armchair, at about 
70 cm from the screen used to display visual stimulation. 
The subjects were shown their EEG activity prior to the 
recording and explanations were given about muscular 
artifacts and eye blinks. They were instructed to relax and 
prevent excessive muscular contractions or eye movements. 

C. Data Acquisition 

EEG signals were continuously recorded at a sampling 
rate of 2 kHz using 16 active Ag/AgCl electrodes from an 
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actiCap system, connected to a V-Amp amplifier, both from 
Brain Products. The electrodes were placed according to the 
10-20 system with a focus on parietal and occipital regions at 
positions Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3, Pz, P4, 
P8, O1, Oz and O2. Two additional electrodes were used as 
mass and reference for the amplifier and were located 
respectively at AFz and FCz. 

A photodiode connected directly to the EEG amplifier 
auxiliary input allowed synchronization between the EEG 
recordings and the visual stimulation. The BPW-21R 
photodiode was chosen for its sensitivity to visible light 
(420-675 nm) and its theoretical response time of about 3 µs, 
lower than any other time scale in our setup. 

D. Stimulation 

The presented stimuli were flickering black and white 
checkerboards composed of a 10 by 10 grid of squares, for a 
total stimulus size of 500 by 500 pixels, corresponding 
approximately to 11° by 11° of the visual field. During 
experiments, subjects were asked to keep their gaze on a 
40 pixels red fixation cross located at the center of the 
display, at the intersection of four checkerboards. 

Stimulations were designed using PsychToolBox-3 [6][7] 
on MATLAB and displayed on a Samsung S23A750D 
screen with a refresh rate of 120 Hz. In the rest of the paper, 
a stimulation with 2 reversals per second will be referred to 
as a 2 Hz stimulation. Photodiode measurements allowed us 
to check that the contrast of stimulations decreased by less 
than 1% between low frequency and high frequency 
stimulations (up to 60 Hz). Furthermore, the stimulation 
frequency had no noticeable variations over time at a 2 kHz 
sampling rate. 

E. Recording Procedure 

Each experiment consisted in the recording of 2 minutes 
of resting state with eyes open, 2 minutes of resting state 
with eyes closed, a total of 5 minutes of VEPs (at a 2 Hz 
frequency) and 3 sets of SSVEPs, composed of 20 different 
stimulation frequencies, each presented during 15s in a 
randomized order, for a total of 45s of SSVEP signal per 
frequency. The total stimulation time was 20 minutes.  

The sequences were displayed in the following order: 

 1 min resting state with eyes open 

 1 min resting state with eyes closed 

 5 sequences of 30 s of VEP recording (2 Hz) 

 20 sequences of SSVEP recording of 15 s each 

 20 sequences of SSVEP recording of 15 s each 

 20 sequences of SSVEP recording of 15 s each 

 1 min resting state with eyes open 

 1 min resting state with eyes closed 

 5 sequences of 30s of VEP recording (2Hz) 

Between each sequence, the subject was able to rest for 
as long as desired, and controlled the beginning of the next 

sequence with a button. After the button was pressed, a 3s 
countdown preceded the beginning of the sequence. 

SSVEPs were recorded at the following frequencies (in 
reversals per second): 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7.05, 8, 9.23, 
10, 12, 13.33, 15, 17.14, 20, 24, 30 and 40. 

F. Signal Processing 

Analyses were performed using MATLAB® 2013a, with 
the signal processing toolbox. The recorded EEG signals 
were filtered between 0.5 Hz and 90 Hz, and a notch filter 
was applied in real time by the amplifier to remove the 
50 Hz component due to the power grid. Before any analysis 
was performed, all data were downsampled from 2 kHz to 
1.8 kHz using MATLAB’s resample function. Thanks to this 
procedure, all inter-stimuli durations for all previously 
mentioned frequencies corresponded to integer numbers of 
points in the downsampled signals. This allowed for precise 
segmentation of SSVEPs and precise estimation of 
frequencies using Fast Fourier Transforms (FFTs). Both 
filtering and downsampling were applied on the raw signal 
before any segmentation to avoid border effects. 

G. Simulations 

For a given frequency, SSVEPs were simulated for each 
subject by generating trains of individual VEPs. VEP was 
computed for each subject by averaging of 600 trials lasting 
0.5 s. Delay between two successive waveforms was taken 
equal to the desired SSVEP period. When this delay was 
shorter than the length of the VEP, the waveforms were 
summed in the overlapping area. Fig. 1 illustrates the 
principle of this simulation and shows examples of SSVEPs 
simulated at different frequencies. 

 

Figure 1. Simulation of SSVEPs using transient VEPs. (a) Principles of the 

simulation: in order to generate a SSVEP signal at a given frequency f, 

VEPs are concatenated in the time domain with a delay between two 

consecutive VEPs equal to the period of the stimulation (1/f). (b) Result of 

the simulation procedure at 12 Hz presented in (a) in the time domain. (c), 

(d), (e) SSVEPs simulated at other frequencies (2 Hz, 6 Hz and 20 Hz) 

 



  

H. Classification 

Using MATLAB’s linear discriminant analysis (LDA) 
function, we built a classifier which takes as input a set of 
features extracted from an EEG epoch recorded during 
SSVEP stimulation at one of the 20 frequencies mentioned in 
II. E. The classifier is trained to evaluate the frequency of the 
IPS during which the recording was performed (20 classes 
classifier). We evaluated the performances of the classifier as 
the percentage of well-classified epochs. We used two 
different approaches for cutting our data into training and 
test sets. First, we randomly segmented our database into 100 
small sets of equal size. We evaluated the accuracy of the 
classifier on each small set while all other sets were used for 
training (leave 1% out). Performances were then averaged on 
all test sets. The other approach consists in training the 
classifier using all but one subject and to use data from the 
last subject as the train set. This was done for all subjects, 
and performances were averaged (leave one subject out). All 
classification tests were performed for different epoch 
length, ranging from 1 s to 15 s.  

I. Features used for Classification 

Three types of features were used as inputs of the 
classifier. The first one is the spectral amplitude taken at 
each stimulation frequency (for a total of 20 features), which 
was estimated using MATLAB’s FFT algorithm on time 
windows corresponding to multiples of the stimulation 
period, so that stimulation frequency and its harmonics 
would fall precisely on points of the resulting frequency axis. 
The second type consists in a signal-to-background ratio 
(SBR) in the spectral domain, which is easily computed by 
dividing the previously mentioned spectral amplitude by the 
average amplitude in a 1 Hz radius around the stimulation 
frequency. Both FFT amplitudes and SBR were extracted at 
the first 10 harmonics of each frequency. The third type of 
features is the maximum of the cross-correlation function 
between the EEG epoch and simulated SSVEPs at each of 
the 20 stimulation frequencies. Unless specified otherwise, 
the simulated signals are generated for each subject using 
their own VEP in order to estimate the cross-correlation. All 
features were extracted from the Oz channel, located over 
the visual cortex. 

III. RESULTS 

A.  Classification using one set of features 

Fig. 2 shows the classification accuracies obtained with a 
single set of features (calculated for each stimulation 
frequency therefore containing 20 features). Accuracy is 
computed for different epoch lengths, and in the two 
conditions described in II. H.  

We observe that the correlation score is the best feature 
to classify epochs for all epoch lengths and in both 
conditions. Classification using FFT amplitudes and FFT 
signal-to-background ratios as input features give very 
similar results, with FFT amplitudes giving slightly better 
results than FFT SBR for epoch lengths below 6 s and FFT 
SBR doing slightly better for epoch lengths above 6 s. 
Classification accuracy using these spectral features 

decreases as the order of the harmonic taken into account 
increases. Accuracies are always better in the leave 1% out 
condition (Fig. 2a) than in the leave one subject out 
condition (Fig. 2b), but these do not differ by more than 4%.  

 

Figure 2. Classification accuracy with a single set of features. (a) Using the 

leave 1% out learning approach. (b) Using the leave one subject out 

learning approach. Black lines: accuracy using correlation scores with 

simulated trains of VEPs. Red lines: accuracy using the FFT amplitudes 

taken at the stimulation frequency (1 f) and its harmonics (2 f, 3 f…). Blue 

lines: same as red but using FFT signal-to-background ratio. 

B. Classification using multiple harmonics 

Fig. 3 shows the classification accuracies obtained when 
increasing the number of harmonics taken into account 
simultaneously by the classifier. Fig. 3a and 3b compares the 
results obtained using the proposed correlation score with 
those obtained using respectively FFT amplitudes and SBR 
at the stimulation frequency and its harmonics. Only the 
accuracies obtained with the leave one subject out method 
are displayed, since this situation is the most likely to happen 
in real SSVEP-based BCI training and test scenarios. 

We observe that classification accuracy increases when 
we add the 2

nd
 and 3

rd
 harmonics as input features to the 

classifier as compared to when using only spectral features at 
the fundamental frequency. Addition of higher order 
harmonics does not improve the classification results 
significantly. 

Spectral amplitude-based classification (Fig. 3a) using 3 
or more harmonics give similar accuracies as correlation-
based classification for epochs shorter than 6 s, while not 
being as accurate for longer epochs. The opposite effect can 
be observed on Fig. 3b, which shows that spectral SBR-
based classification gives smaller accuracies for epochs 
below 6 s than correlation-based classification, but reaches 
equal or even slightly superior accuracies for longer epochs. 



  

 

Figure 3. Classification accuracy using multiple harmonics. (a) Results 

with FFT amplitudes. (b) Results with FFT signal-to-background ratio. 

Black lines: accuracy using correlation features (20 features). Colored 

dashed lines: accuracy using multiple harmonics (total number of features 

is 20 * number of harmonics). 

C. Influence of the VEP used for stimulation 

Simulated SSVEP signals can be generated using 
different VEPs. In the previous sections, correlation features 
were computed for each subject using their own VEP to 
generate simulated signals. Table 1 summarizes the results 
obtained when correlation features are not computed with 
each subject’s individual VEP, but with one subject’s VEP 
for the whole dataset. 

 Epoch Length (s) 

 1 1.5 2 2.5 3 4 5 6 8 10 12.5 15 

Own VEP 

(%) 
46.8 55.6 62.0 66.0 70.0 76.3 80.3 83.6 87.2 88.7 91.7 92.5 

Best VEP 

(%) 
47.9 56.1 62.8 66.6 69.9 76.2 80.2 83.4 86.2 88.0 91.3 91.7 

Average 

for all 

VEPs (%) 

46.4 54.3 60.9 64.7 68.1 73.8 77.7 81.1 83.7 86.1 89.1 90.1 

Best 

feature 

VEP

5 

VEP 

5 

VEP 

5 

VEP 

5 

Own 

VEP 

Own 

VEP 

Own 

VEP 

Own 

VEP 

Own 

VEP 

Own 

VEP 

Own 

VEP 

Own 

VEP 

# of VEPs 

better 

than own 

4 1 2 1 0 0 0 0 0 0 0 0 

Table 1. Classification results obtained when using different VEPs to 

simulate SSVEPs. Own VEP: classification accuracy obtained using 

correlation coefficients with the signals simulated from a subject’s own 

VEP. Best VEP: best classification accuracy obtained using a single VEP 

to classify all subjects. Average for all VEPs: average classification 

accuracy obtained using each VEP to classify the dataset. Best feature: 

VEP giving the best classification results. # of VEPs better than own: 

number of VEPs giving better results when used for all subjects than using 

his own VEP for each subject. 

IV. DISCUSSION 

On Fig. 3, we observed that the accuracy of the classifier 
built using the proposed correlation feature is close to the 

limit reached when using several harmonics of spectral 
features. This could indicate that correlation with a simulated 
train of VEPs and frequency decomposition of SSVEPs 
convey the same information. Of course, it is logical that a 
periodic signal in the time domain holds the same 
information as its frequency representation, but the 
interesting thing here is that the signal taken as reference is 
not a genuine SSVEP signal but a simulated SSVEP signal 
formed by adding VEPs in the time domain. This supports 
the idea that SSVEPs are indeed formed of a succession of 
transient VEPs, even at frequency higher than 6 Hz when 
consecutive VEPs start to overlap one with another. 

One advantage of using a single correlation feature 
instead of multiple features computed for different 
harmonics is linked with the problem of SSVEP detection in 
a context where several stimulation frequencies are presented 
at the same time (i.e. in a SSVEP-based BCI) and contain 
common harmonics. Indeed, two flickering patterns can 
generate activity at the same frequency but with a different 
phase. Estimation of the spectral density will fail to make the 
difference between such contributions, whereas correlation 
with a time domain signal takes into account both magnitude 
and phase of the different components of the SSVEP signal 
in a single feature. Using fewer features also makes it easier 
to train the classifier and to avoid overfitting issues. 

For epochs longer than 3 s, results in Table 1 confirmed 
our hypothesis that classification works better when 
comparing one subject’s experimental SSVEPs with 
simulated signals obtained from the same subject’s VEP. 
However, results obtained on epochs shorter than 3 s show 
that some properties of VEPs may make them better 
candidates for simulating signals used for SSVEP detection. 
We have yet to identify what made subject 5’s VEP the best 
waveform in such context. 

It can be noted that this study only takes into account one 
electrode (Oz), whereas VEP can be recorded at several 
locations on the scalp, allowing for multi-electrode 
simulation and cross-correlation which may increase the 
classification accuracies presented here. 
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